AlSver.ru / Резка / Вы сейчас просматриваете:

Описание и применение лазерной резки металла

Лазерная резка приобретает все большую популярность ввиду того, что позволяет автоматизировать весь цикл обработки и получить изделие высокого качества. Технология разделки металла с помощью лазера делает возможным производство высокоточных деталей в полностью автономном режиме, исключающем ручной труд.

Технология лазерной резки металла

Лазерная резка и гравировка относятся к немеханическим способам обработки, равно как и плазменный метод. Они используют термическое воздействие, при котором сильно нагревается линия разреза, а металл плавится в нужном месте. Традиционным механическим способом обработки, в основе которого лежит разница твердости режущего инструмента и заготовки, считается алмазная резка металла. Нагрева в месте разреза не происходит. Хорошей точности и чистоты реза этот способ не дает.

Режущим инструментом в лазерной технологии является луч, который испускается с помощью специальной установки. Он фокусируется на участке с крайне небольшой площадью (не более 0,5 мм), создавая сгусток энергии высокой плотности. В точке фокусировки металл начинает достаточно быстро разрушаться (испаряться, гореть, плавиться).

Лазерному лучу помогают производить такой эффект следующие характеристики:

  1. Монохроматичность. Неизменность частоты и длины волны, позволяющая лучу при помощи простых оптических линз легко фиксироваться на любой поверхности.
  2. Направленность. Имея малый угол расходимости, луч хорошо концентрируется на нужном участке.
  3. Когерентность. Проходящие в луче волновые процессы колеблются согласованно и вызывают резонанс, который во много раз усиливает мощность излучения.

Дальнейшее воздействие вызывает испарение материала, т. к. температура в контактной зоне достигает точки кипения. Теплопроводность металла способствует перемещению пятна плавления вглубь разрезаемой заготовки.

Выделяют 2 механизма резки лазером: плавлением и испарением. Применение второго метода возможно только на тонком металле. К тому же большая мощность установки потребует соответствующих энергозатрат, что не всегда экономически оправданно. Вариант резки плавлением получил гораздо более широкое распространение, т. к. затраты энергии намного ниже. При способе обработки методом плавления используется вспомогательный газ (аргон, азот, гелий или воздух), вдуваемый в зону реза специальными установками.

основные механизмы

Кислород, используемый в качестве вспомогательного газа, выполняет следующие важные задачи:

  • выдувает из области резки капли расплавленного металла и отходы горения, обеспечивая поступление газа в режущую зону;
  • активизирует окислительные процессы в металле, тем самым снижая его отражающие качества;
  • при поступлении кислорода металл горит интенсивнее, дополнительно выделяющаяся теплота увеличивает лазерное воздействие.

Алюминий

Лазерная резка алюминия обладает некоторыми особенностями, которые обуславливаются свойствами самого металла. Работать с алюминием сложнее, чем с другими материалами. Благодаря своим оптическим и теплофизическим характеристикам металл имеет высокую отражающую способность и поглощает лазерное излучение плохо.

Для резки алюминия потребуется мощность лазерного излучения гораздо большая (в 2-3 раза), чем для разделки углеродистых сталей. Это необходимо из-за высоких коэффициентов теплопроводности, отражения излучения и температуры плавления образовавшихся тугоплавких оксидов. Приходится использовать для обработки металла оборудование, обладающее более мощной режущей способностью.

Рекомендуется разрезать металл на невысоких скоростях обработки, т. к. это позволит предотвратить образование повреждения поверхности и добиться лучшего качества работы. Резка заготовок с малыми толщинами должна производиться в импульсном режиме работы устройства, благодаря этому уменьшается область нагрева поверхности в зоне резания и снижается риск деформации детали.

С толстым металлом советуют работать в микроплазменном режиме. Плазма образуется под действием паров легко ионизируемых элементов (цинк, магний и др.), она нагревает металл до температуры плавления с минимальными энергетическими затратами.

Вспомогательным газом чаще является азот, он поступает в область резания под давлением более 10 атм. Плоскость реза имеет немного шероховатую и пористую структуру, на нижней кромке наблюдается небольшое количество легкоудаляющегося грата (излишков металла). С ростом толщины заготовки понижается качество реза. Процесс показан на видео:

Нержавейка

Самой сложной признается лазерная резка нержавейки. Этот материал обладает большой стойкостью к разрушению, поэтому другим видам обработки он плохо поддается. Часто только лазерный метод бывает единственно возможным способом резки листового материала, т. к. при высоких температурах алюминий окисляется, а на поверхности образуются холодные трещины. Крайне затруднительна и неэффективна бывает механическая резка металла.

Сложности обработки материала обусловлены следующими качествами нержавеющих сталей:

  • наличие в составе большого количества легирующих присадок способно привести к зашлаковыванию поверхности реза;
  • затрудняется подвод лазерного луча к режущей зоне из-за формирования тугоплавких оксидов, вследствие чего расход энергии увеличивается;
  • для сталей высокохромистых и хромоникелевых характерна низкая текучесть, что сильно осложняет процесс резания.

При таком способе резки нержавейки применяется хорошо очищенный азот, который поступает под давлением до 20 атм. Когда резке подвергаются толстые заготовки, пятно луча заглубляется в материал для обеспечения хорошего доступа газа. При этом входное отверстие будет иметь больший диаметр, и поступление азота в область расплава возрастает.

Медь

Лазерная резка меди сильно осложняется достаточно высокой теплопроводностью металла и большим коэффициентом теплоемкости, что накладывает некоторые ограничения на применяемое оборудование. Обработка этого металла лазером должна производиться на малых скоростях с наименьшим размером пятна контакта и при больших значениях мощности излучения.

Оптимальными для резания являются медные листы не более 0,5 см толщиной. Сложный технологический процесс не позволяет нормально работать с толстыми медными заготовками. Возможно только простое раскраивание. Резка будет экономически невыгодной из-за необходимости применения оборудования чрезмерно большой мощности.

Преимущества и недостатки

Резка с помощью лазера имеет ряд неоспоримых преимуществ при сопоставлении с другими видами обработки. Выделяют следующие положительные характеристики:

  • приемлемый диапазон обрабатываемых толщин: лазерная резка алюминия — 0,2-2 см, нержавейка — резка листов толщиной до 1,2 см, углеродистая сталь — 0,5-2 см, латунь и медь — 0,2-1,5 см;
  • ширина реза от 0,1 до 1 мм;
  • исключение непосредственного контакта режущего элемента с поверхностью обрабатываемой заготовки, что позволяет работать с хрупкими и ломкими материалами;
  • отсутствие потребности в дополнительной финишной обработке;
  • высокая производительность (особенно при сопоставлении с резкой металла кислородом);
  • простота и легкость управления оборудованием на производстве: чертеж изделия, выполненный в специальной графической программе, просто загружается в блок управления;
  • высокая скорость разделки тонколистового проката;
  • экономный расход материала за счет компактного расположения деталей на листе раскроя;
  • резка металла под углом и в различных направлениях;
  • изготовление изделий сложных форм;
  • экономически выгодное производство изделий малыми партиями, когда операции штамповки и литья нецелесообразны;
  • высокая точность разреза с ровными краями без наплывов и заусенцев, позволяющая передавать детали от места резки сразу на участок сварки металлов.

Надо отметить и отрицательные стороны резки лазером:

  • высокая стоимость;
  • низкая продуктивность при резке бронзы, алюминия, легированной стали и латуни;
  • невозможность разделывать заготовки любой толщины;
  • вследствие подкаливания материала в зоне пятна резки возможны трудности последовательного проведения лазерной резки и гибки металла.

достоинства и недостатки лазерной резки

Оборудование

Находят применение несколько вариантов оборудования:

  1. Твердотелое оборудование. Рабочим элементом является кристалл рубина (алюмоиттриевый гранат, неодимовое стекло). Угол подачи потока света на искусственный рубин будет иметь четкое значение. Установка относительно небольшой мощности применяется как для гравировки металла, так и для резки цветных металлов. Слесарное дело в небольшом цехе получит хорошее подспорье. Небольшие станки возможно использовать для работы своими руками.
  2. Газовая установка. В оборудовании для лазерной резки металла газ является активным элементом, который заряжается при прохождении через электрическое поле. Затем газы начинают выпускать монохроматическое световое излучение. Большую востребованность имеют щелевидные модели, использующие углекислый газ. Подобные установки для резки металла мощные и простые в работе, но при этом небольших размеров.
  3. Газодинамическая установка. На устройствах этого типа лазерная резка металла будет достаточно дорогой процедурой, т. к. оборудование мощное и сложное. Газ (чаще углекислый) разогревается до чрезвычайно высоких температур (2000-3000°C), затем при прохождении через узкое сопло он расширяется. При последующем охлаждении излучается энергия, которая идет на формирование луча. Качество получаемых изделий настолько хорошее, что их можно сразу направлять на гибочный участок.

станки для лазерной резки

Станок для лазерной резки

Все станки, на которых осуществляется лазерная резка и гравировка, содержат несколько необходимых компонентов:

  1. Излучатель. Порождает пучки лазерных лучей.
  2. Система перемещения лазерного излучения и система формирования луча. Перемещает лазерные пучки, формирует 1 большой луч и, пользуясь системой фокусировки, направляет в нужное место.
  3. Система образования и транспортировки газа. Готовит необходимый состав и нужное количество рабочего газа, а затем через сопло доставляет его к месту резки.
  4. Устройство координации. Перемещает в пространстве луч и обрабатываемый объект.
  5. Система автоматического управления. Проверяет и регулирует работу всего оборудования, командует координатным устройством, системой транспортировки и формирования луча и газа.

Лазерная резка алюминия производится исключительно на станках с ЧПУ, все настройки и операции происходят автоматически в соответствии с программным обеспечением. Это позволяет получить изделия лучшего качества, чем при разделке пилой, электродом или отрезным алмазным диском.

Предназначение лазерного оборудования

Технологические устройства для резки по металлу лазером характеризуются несколькими параметрами:

  • составом газовой струи и ее давлением;
  • типом обрабатываемого материала;
  • мощностью излучения и его интенсивностью.

Существуют специализированные станки для резки труб, а также для работ с мягкими и пластичными металлами. Технология лазерной резки приобретает все более широкое распространение, т. к. дает возможность существенно снизить трудоемкость технологического процесса и свести использование ручного труда к минимуму. Для изготовления всевозможных металлических деталей и декоративных элементов из листов материала разной толщины все чаще используется лазерная резка металла.